Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Immunol ; 15: 1371089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571964

RESUMO

CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the immunomodulatory cell population that can inhibit both innate and adaptive immunity by various regulatory mechanisms. In hepatic microenvironment, proliferation, plasticity, migration, and function of Tregs are interrelated to the remaining immune cells and their secreted cytokines and chemokines. In normal conditions, Tregs protect the liver from inflammatory and auto-immune responses, while disruption of this crosstalk between Tregs and other immune cells may result in the progression of chronic liver diseases and the development of hepatic malignancy. In this review, we analyze the deviance of this protective nature of Tregs in response to chronic inflammation and its involvement in inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also provide a detailed emphasis on the relevance of Tregs as an effective immunotherapeutic option for autoimmune diseases, liver transplantation, and chronic liver diseases including liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Linfócitos T Reguladores , Citocinas , Microambiente Tumoral
2.
Cell J ; 26(2): 98-111, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38459727

RESUMO

Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.

3.
ACS Appl Bio Mater ; 7(3): 1449-1468, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442406

RESUMO

This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 µm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.


Assuntos
Quitosana , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Lipossomos , Alginatos/farmacologia , Alginatos/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Impressão Tridimensional
4.
Heliyon ; 10(2): e24948, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312681

RESUMO

Inflammatory and autoimmune diseases are among the most challenging disorders for health care professionals that require systemic immune suppression which associates with various side effects. Mesenchymal stromal cells (MSCs) are capable of regulating immune responses, mainly through paracrine effects and cell-cell contact. Since MSCs are advanced therapy medicinal products (ATMPs), they must follow Good Manufacturing Practice (GMP) regulations to ensure their safety and efficacy. In this study, we evaluated the immunomodulatory effects of GMP-compliant clinical grade MSCs obtained from four different sources (bone marrow, adipose tissue, Wharton's Jelly, and decidua tissue) on allogeneic peripheral blood mononuclear cells (PBMCs). Our results revealed that WJ-MSCs were the most successful group in inhibiting PBMC proliferation as confirmed by BrdU analysis. Moreover, WJ-MSCs were the strongest group in enhancing the regulatory T cell population of PBMCs. WJ-MSCs also had the highest secretory profile of prostaglandin E2 (PGE-2), anti-inflammatory cytokine, while interleukin-10 (IL-10) secretion was highest in the DS-MSC group. DS-MSCs also had the lowest secretion of IL-12 and IL-17 inflammatory cytokines. Transcriptome analysis revealed that WJ-MSCs had the lowest expression of IL-6, while DS-MSCs were the most potent group in the expression of immunomodulatory factors such as hepatocyte growth factor (HGF) and transforming growth factor-ß (TGF- ß). Taken together, our results indicated that GMP-compliant Wharton's Jelly and decidua-derived MSCs showed the best immunomodulatory performance considering paracrine factors.

5.
J Crohns Colitis ; 18(3): 360-374, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695111

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel disease [IBD] comprises an immune-mediated group of chronic gastrointestinal disorders. Patients with IBD may experience extraintestinal manifestations, such as hepatobiliary complications. This meta-analysis aims to assess the prevalence of different hepatic manifestations in IBD patients. METHODS: For this systematic review and meta-analysis, PubMed, Scopus, Web of Science, and Embase were searched until July 20, 2022, by specifying keywords for IBD, hepatic manifestations, and study type. Full texts of cohort studies in English that examined the prevalence of different hepatic manifestations were included in this study. The primary outcome was the overall prevalence of hepatic manifestations in IBD patients. For the statistical analysis, a proportion by random effect model meta-analysis was performed. The registration number for the protocol of this study in PROSPERO is CRD42022369595. RESULTS: From the 4421 articles retrieved from the primary search, 118 met the inclusion criteria and were included in the final analysis. After a pooled analysis of 1 729 128 patients, the overall prevalence of hepatic manifestations was 3.49% (95% confidence interval [CI]: 3.31-3.68%; I2: 99.55%). The pooled prevalence of non-alcoholic fatty liver disease in 228 216 patients was 26.1% [95% CI: 22.1-30.2%; I2: 99.018%]. After pooled analysis of 9642 patients, the prevalence of primary sclerosing cholangitis was 1.67% [95% CI: 1.47-1.88%; I2: 99.10%]. The pooled prevalence of biliary stones was 4.1% [95% CI: 3.6-4.7%; I2: 97.43%]. Autoimmune hepatitis (0.51% [95% CI: 0.26-0.75%]; I2: 85.36%) and portal vein thrombosis (0.21% [95% CI: 0.08-0.33%]; I2: 97.95%) are considered as rare manifestations. CONCLUSION: This study summarizes the prevalence and importance of different hepatic manifestations in IBD patients. These findings are crucial for the management of extraintestinal manifestations, especially hepatic manifestations, in IBD patients.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Prevalência , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/epidemiologia , Projetos de Pesquisa
6.
Int J Biol Macromol ; 253(Pt 2): 126808, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37689301

RESUMO

Despite many efforts, breast cancer remains one of the deadliest cancers and its treatment faces challenges related to cancer drug side effects and metastasis. Combining 3D printing and nanocarriers has created new opportunities in cancer treatment. In this work, 3D-printed gelatin-alginate nanocomposites containing doxorubicin-loaded niosomes (Nio-DOX@GT-AL) were recruited as an advanced potential pH-sensitive drug delivery system. Morphology, degradation, drug release, flow cytometry, cell cytotoxicity, cell migration, caspase activity, and gene expression of nanocomposites and controls (Nio-DOX and Free-DOX) were evaluated. Results show that the obtained niosome has a spherical shape and size of 60-80 nm. Sustained drug release and biodegradability were presented by Nio-DOX@GT-AL and Nio-DOX. Cytotoxicity analysis revealed that the engineered Nio-DOX@GT-AL scaffold had 90 % cytotoxicity against breast cancer cells (MCF-7), whereas exhibited <5 % cytotoxicity against the non-tumor breast cell line (MCF-10A), which was significantly more than the antitumor effect of the control samples. Scratch-assay as an indicator cell migration demonstrated a reduction of almost 60 % of the covered surface. Gene expression could provide an explanation for the antitumor effect of engineered nanocarriers, which significantly reduced metastasis-promoting genes (Bcl2, MMP-2, and MMP-9), and significantly enhanced the expression and activity of genes that promote apoptosis (CASP-3, CASP-8, and CASP-9). Also, considerable inhibition of metastasis-associated genes (Bax and p53) was observed. Moreover, flow-cytometry data demonstrated that Nio-DOX@GT-AL decreased necrosis and enhanced apoptosis drastically. The findings of this research can confirm that employing 3D-printing and niosomal formulation can be an effective strategy in designing novel nanocarriers for efficient drug delivery applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Lipossomos/uso terapêutico , Gelatina , Alginatos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias da Mama/patologia , Concentração de Íons de Hidrogênio , Células MCF-7 , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos
7.
ACS Biomater Sci Eng ; 9(9): 5186-5204, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37585807

RESUMO

This systematic review and meta-analysis focused on the effectiveness of biomaterials integrated with specific microRNAs (miRNAs) for bone fracture repair treatment. We conducted a comprehensive search of the PubMed, Web of Science, and Scopus databases, identifying 42 relevant papers up to March 2022. Hydrogel-based scaffolds were the most commonly used, incorporating miRNAs like miR-26a, miR-21, and miR-222, with miR-26a being the most prevalent. The meta-analysis revealed significant benefits of incorporating miRNAs into scaffolds for bone repair, particularly in hydrogel scaffolds. However, some controversies were observed among studies, presenting challenges in selecting appropriate miRNAs for this purpose. The study concludes that incorporating specific miRNAs into bone biomaterials enhances bone regeneration, but further trials comparing different biomaterials and miRNAs are necessary to validate their potential applications for bone tissue regeneration.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea/genética , Hidrogéis/uso terapêutico , Biologia Computacional
8.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626924

RESUMO

The liver is a vital organ responsible for metabolic and digestive functions, protein synthesis, detoxification, and numerous other necessary functions. Various acute, chronic, and neoplastic disorders affect the liver and hamper its biological functions. Most of the untreated liver diseases lead to inflammation and fibrosis which develop into cirrhosis. The human amniotic membrane (hAM), the innermost layer of the fetal placenta, is composed of multiple layers that include growth-factor rich basement membrane, epithelial and mesenchymal stromal cell layers. hAM possesses distinct beneficial anti-fibrotic, anti-inflammatory and pro-regenerative properties via the secretion of multiple potent trophic factors and/or direct differentiation into hepatic cells which place hAM-based therapies as potential therapeutic strategies for the treatment of chronic liver diseases. Decellularized hAM is also an ideal scaffold for liver tissue engineering as this biocompatible niche provides an excellent milieu for cell proliferation and hepatocytic differentiation. Therefore, the current review discusses the therapeutic potential of hAM and its derivatives in providing therapeutic solutions for liver pathologies including acute liver failure, metabolic disorders, liver fibrosis as well as its application in liver tissue engineering.


Assuntos
Âmnio , Hepatopatias , Humanos , Feminino , Gravidez , Hepatopatias/terapia , Cirrose Hepática/terapia , Hepatócitos
9.
Cell J ; 25(8): 524-535, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641414

RESUMO

OBJECTIVE: Macrophages are multifunctional immune cells widely used in immunological research. While autologous macrophages have been widely used in several biomedical applications, allogeneic macrophages have also demonstrated similar or even superior therapeutic potential. The umbilical cord blood (UCB) is a well-described source of abundant allogenic monocytes and macrophages that is easy to collect and can be processed without invasive methods. Current monocyte isolation procedures frequently result in heterogenous cell products, with limited yields, activated cells, and high cost. This study outlines a simple isolation method that results in high yields and pure monocytes with the potential to differentiate into functional macrophages. MATERIALS AND METHODS: In the experimental study, we describe a simple and efficient protocol to isolate highpurity monocytes. After collection of human UCB samples, we used a gradient-based procedure composed of three consecutive gradient steps: i. Hydroxyethyl starch-based erythrocytes sedimentation, followed by ii. Mononuclear cells (MNCs) isolation by Ficoll-Hypaque gradient, and iii. Separation of monocytes from lymphocytes by a slight hyperosmolar Percoll gradient (0.573 g/ml). Then the differentiation potential of isolated monocytes to pro- and antiinflammatory macrophages were evaluated in the presence of granulocyte colony-stimulating factor (GM-CSF) and macrophage CSF (M-CSF), respectively. The macrophages were functionally characterized as well. RESULTS: A high yield of monocytes after isolation (25 to 50 million) with a high purity (>95%) could be obtained from every 100-150 ml UCB. Isolated monocytes were defined based on their phenotype and surface markers expression pattern. Moreover, they possess the ability to differentiate into pro- or anti-inflammatory macrophages with specific phenotypes, gene/surface protein markers, cytokine secretion patterns, T-cell interactions, and phagocytosis activity. CONCLUSION: Here we describe a simple and reproducible procedure for isolation of pure monocytes from UCB, which could be utilized to provide functional macrophages as a reliable and feasible source of allogenic macrophages for biomedical research.

10.
Cell J ; 25(6): 407-417, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37434458

RESUMO

OBJECTIVE: Surgery and chemotherapy are the most common therapeutic strategies proposed for oral squamous cell carcinoma (OSCC). However, some of the disadvantages associated with the current methods like unwanted side effects and poor drug response lead the scientist to seek for novel modalities and delivery approaches to enhance the efficacy of treatments. The study aimed to assess the effectiveness of disulfiram (DSF)-loaded Niosomes on cancerous phenotypes of the OSCC cells. MATERIALS AND METHODS: In this experimental study, an optimum formulation of DSF-loaded Niosomes was developed for the treatment of OSCC cells to reduce drug doses and improve the poor stability of DSF in the OSCC environment. The design expert software was utilized to optimize the particles in terms of size, polydispersity index (PDI), and entrapment efficacy (EE). RESULTS: Acidic pH increased the release rate of DSF from these formulations. The size, PDI, and EE of Niosomes were more stable at 4°C compared to 25°C. The results indicated that DSF-loaded Niosomes could induce apoptosis (P=0.019) in the OSCC cells compared to the control group. Moreover, it could reduce colony formation ability (P=0.0046) and also migration capacity of OSCC cells (P=0.0015). CONCLUSION: Our findings indicated that the application of proper dose of DSF-loaded Niosomes (12.5 µg/ml) increases apoptosis, decreases colony formation capacity and declines the migration ability of OSCC cells.

11.
Eur J Pharm Biopharm ; 188: 33-47, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105361

RESUMO

Gastric cancer (GC) is known as a deadly malignancy all over the world, yet none of the current therapeutic regimens have achieved efficacy. this current study has aimed to optimize and reduce treatment doses and overcome multidrug resistance in GC by developing optimum niosomal formulation for the delivery of doxorubicin (DXR), paclitaxel (PTX), and their co-delivery. The particles' size, polydispersity index (PDI), and entrapment efficacy (EE%) were optimized using statistical techniques, i.e., Box-Behnken and Central Composite Design. In contrast to soluble drug formulations, the release rate of medicines from nanoparticles were higher in physiological and acidic pH. Niosomes were more stable at 4 °C, compared to 25 °C. The MTT assay revealed that the IC50 of drug-loaded niosomes was the lowest among all developed formulations. The apoptosis-related genes (CASPASE-3, CASPASE-8, and CASPASE-9) and tumor suppressor genes (BAX, BCL2) were evaluated in cancer cells before and after treatment. In comparison to control cells and cells treated with soluble forms of DXR and PTX, while the expression of BCL2 decreased, the expression of BAX, CASPASE-3, CASPASE-8, and CASPASE-9 was enhanced in cells treated with drug-loaded niosomes. Drug-loaded niosomes inhibited colony formation capacity and increased apoptosis in human AGS gastric cancer cells. Our results indicate that co-delivery of DXR and PTX-loaded niosomes may be an effective and innovative therapeutic approach to gastric cancer.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Paclitaxel/farmacologia , Caspase 3 , Caspase 9 , Caspase 8 , Lipossomos , Neoplasias Gástricas/tratamento farmacológico , Proteína X Associada a bcl-2 , Liberação Controlada de Fármacos , Doxorrubicina/farmacologia
12.
Expert Opin Biol Ther ; 23(6): 461-478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073114

RESUMO

INTRODUCTION: Mesenchymal stromal cell (MSC)-based therapy has generated great hope for the treatment of various diseases such as myocardial infarction and stroke. Unfortunately, MSC-based therapy faces major hurdles in its translation to clinical practice. To address these issues, preconditioning and genetic modification strategies have been developed. Through preconditioning, MSCs are cultured under sub-lethal conditions of environmental stresses or treated with specific drugs, biomolecules, and growth factors. Genetic modification is a procedure in which specific genetic sequences are transferred into the MSCs via viral vectors or CRISP/Cas9 in order to alter the expression of distinctive genes. AREAS COVERED: In this article, a comprehensive review on preconditioning and gene modification inducers, mechanisms of action, and their impacts were discussed. In addition, clinical trials that used preconditioned and genetic modified MSCs are debated. EXPERT OPINION: Numerous preclinical investigations have demonstrated that preconditioning and genetic modifications considerably enhance MSC's therapeutic capacity through improving their survival rate, antioxidant activity, growth factor secretion, immunomodulation, homing efficiency, and angiogenesis. For MSC preconditioning and genetic modification to achieve clinical translation, remarkable outcomes in clinical trials are of pivotal importance.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Transdução de Sinais , Antioxidantes , Fatores Imunológicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
13.
J Cell Mol Med ; 27(6): 763-787, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786037

RESUMO

Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to "cure" ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100-150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Qualidade de Vida , MicroRNAs/genética , Vesículas Extracelulares/metabolismo
14.
Expert Rev Gastroenterol Hepatol ; 17(3): 237-249, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36692130

RESUMO

INTRODUCTION: According to the recent updates from World Health Organization, liver diseases are the 12th most common cause of mortality. Currently, orthotopic liver transplantation (OLT) is the most effective and the only treatment for end-stage liver diseases. Owing to several shortcomings like finite numbers of healthy organ donors, lifelong immunosuppression, and complexity of the procedure, cell and cell-derivatives therapies have emerged as a potential therapeutic alternative for liver diseases. Various cell types and therapies have been proposed and their therapeutic effects evaluated in preclinical or clinical studies, including hepatocytes, hepatocyte-like cells (HLCs) derived from stem cells, human liver stem cells (HLSCs), combination therapies with various types of cells, organoids, and implantable cell-biomaterial constructs with synthetic and natural polymers or even decellularized extracellular matrix (ECM). AREAS COVERED: In this review, we highlighted the current status of cell and cell-derivative-based therapies for liver diseases. Furthermore, we discussed future prospects of using HLCs, liver organoids, and their combination therapies. EXPERT OPINION: Promising application of stem cell-based techniques including iPSC technology has been integrated into novel techniques such as gene editing, directed differentiation, and organoid technology. iPSCs offer promising prospects to represent novel therapeutic strategies and modeling liver diseases.


Assuntos
Doença Hepática Terminal , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Humanos , Hepatopatias/terapia , Hepatopatias/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença Hepática Terminal/terapia , Diferenciação Celular
15.
Iran J Immunol ; 19(3): 299-310, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36190383

RESUMO

BACKGROUND: Periodontal diseases originate from a group of oral inflammatory infections initiated by oral pathogens. Among these pathogens, Gram-negative bacteria such as p. gingivalis play a major role in chronic periodontitis. P. gingivalis harbours lipopolysaccharide (LPS) which enables it to attach to TLR2. OBJECTIVES: Evaluating the effects of P. gingivalis and E. coli LPS on the gene expression of TLRs and inflammatory cytokines in human dental pulp stem cells (hDPSCs). METHODS: We evaluated the expression level of TLR2, TLR4, IL-6, IL-10, and 1L-18 in hDPSCs treated with 1µg/mL of P. gingivalis lipopolysaccharide and E. coli LPS at three different exposure times using Real-time RT-PCR. RESULT: The test group treated with P. gingivalis LPS showed a high level of TLR4 expression in 24 hours exposure period and the lowest expression in 48 hours of exposure time. In the case of IL-10, the lowest expression was in the 24 hours exposure period. Although in the E.coli LPS treated group, IL-10 showed the highest expression in 24 and lowest in 48 hours exposure period. Moreover, IL-18 in P. gingivalis LPS treated group showed a significant difference between 6, 24, and 48-time periods of exposure, but not in the E. coli LPS treated group. CONCLUSION: Both types of LPS stimulate inflammation through TLR4 expression. P. gingivalis LPS performs more potentially than E. coli in terms of stimulating inflammation at the first 24 hours of exposure. Nevertheless, our study confirmed that increasing P. gingivalis and/or the E.coli LPS exposure time, despite acting as an inflammatory stimulator, apparently showed anti-inflammatory properties.


Assuntos
Infecções por Escherichia coli , Porphyromonas gingivalis , Citocinas/genética , Polpa Dentária/metabolismo , Escherichia coli/genética , Expressão Gênica , Humanos , Inflamação , Interleucina-10 , Interleucina-18/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Células-Tronco/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
Stem Cells Int ; 2022: 1850305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132168

RESUMO

Background: A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers' attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2'-chloro-5'-nitrobenzenesulfonyl)-2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. Results: In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. Conclusion: CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.

17.
Bioengineering (Basel) ; 9(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36004917

RESUMO

The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.

18.
Front Cell Dev Biol ; 10: 894800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813199

RESUMO

Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.

19.
Cell J ; 24(2): 62-68, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35279961

RESUMO

Objective: Perianal fistulas in Crohn's disease (CD) are the main challenges in inflammatory bowel diseases (IBDs). Some of the fistulas are refractory to any therapeutic strategy. The aim of this study was to evaluate the therapeutic effects of mesenchymal stromal cells (MSCs) as a novel promising modality for the treatment of fistulizing CD. Materials and Methods: This case series clinical interventional study was conducted from 2014 to 2017 at Shariati Hospital, an IBD referral center in Tehran, Iran. Refractory adult patients with CD who had draining perianal fistulas were enrolled in this study. All patients were examined by a colorectal surgeon and the fistula imaging studies were performed by pelvic magnetic resonance imaging (MRI). After autologous bone marrow (BM) aspiration and MSCs isolation, the cells were cultured and passaged under current good manufacturing practice (cGMP) conditions. Four intra-fistula injections of cells, each containing 40×106 MSCs suspended in fibrin glue, were administered by an expert surgeon every 4 weeks. Procedure safety, feasibility and closure of the perianal fistulas at week 24 were assessed. Clinical examination and MRI findings were considered as the primary end points. Results: In total, 5 patients (2 males and 3 females) were enrolled in this study. No adverse events were observed during the six-month follow-up in these patients. Both the Crohn's Disease Activity Index (CDAI) and Perianal Disease Activity Index (PDAI) scores decreased in all patients after cell injections and one patient achieved complete remission with closure of fistulas, discontinuation of fistula discharge, and closure of the external opening. Conclusion: Local injection of MSCs combined with fibrin glue is potentially a safe and effective therapeutic approach for complex perianal fistulas in patients with CD.

20.
Curr Neuropharmacol ; 20(12): 2320-2345, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35105291

RESUMO

Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Antiparkinsonianos/uso terapêutico , Qualidade de Vida , Assistência Centrada no Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...